
DTIC
S ELECTE

AFIT/GCS/ENG/91D-09 DEC27 19 91

AD-A243 743 C

AN OBJECT-ORIENTED DATABASE
IMPLEMENTATION OF THE

MAGIC VLSI LAYOUT
DESIGN SYSTEM

THESIS

Timothy Martin Jacobs
Captain, USAF

AFIT/ GCS/ENG/91D-09

91-19073

Approved for public release; distribution unlimited

91 1224 059



REPORT DOCUMENTATION PAGE Form Approved

0MB No. 07C4-0 188-
Puoticrecorting -rcen 1C , Ii$ u .s iciiction ot .n t arlris estimated to average I hour cet resPonse. ;nctuding the tme to revewing nstructions. searcning es.sting data sources;
qathefing ano maintaining the data ne=ee, and i;n'oietng ano reewing the ,ciiection of information. Send comments regaraing this burdenestimate or 3ny ;ther asoec, of this
Woiiectiondfu ii atQ1 fn. riuding n>ggettcn$ 'or rouc. i g this ourcen. to Washington Heaouarters Services. Directorate or iformation ODeration and Reocrt, 125.,efferion

DavisHignway.iuite i2C .friingrong ,A 22,02-1302. and o the Office of anagement and Budget. PaperAiOK Reduction PojeCt(070il.-088); Nashfngtcn, DC 20503.

1. AGENCY USE ONLY (Leave blank) -2. REPORT DATE 1 3. REPORT TYPE AND DATES COVEREDIDeceniber 1991 !Master's-Thesis -

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN OBJECT-ORIENTED DATABASE IMPLEMENTATION
OF THE MAGIC VLSI LAYOUT DESIGN SYSTEM

6. AUTHOR(S)

Timothy-M. Jacobs, Capt, USAF

17. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORNIING ORGANIZATION-: -I REPORT -NUMBER
Air Force Institute of Techn3logy, WPAFB OH 45433-6583 1 AFIT/GCS/ENG/91D09.

'9. SPCNSCRINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

-RL/OCTS
Rome Labs
Griffis AFB, NY 13441

11. sUPPLEMENTARY NOTES

12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

3. ABSTRACT (Maximum 200 words) -

This thesis attempts to prove that the commercially available ObjectSiore data management system-provides the
performance and functionality necessary to support a complex engineering design system. This is accomplished
by modifying the Magic VLSI-circuit layout design system: to eliminate its current Unix file data management
system and replace it with ObjectStore. The approach to-this research effort includes a design recovery of the
Magic system and identification. of its key data management functions. These functions are then modified to
take advantage of the database management facilities of ObjectStore. Additional code is added to instrument
performance measurement of both the original- and the ObjectStore versions~of the Magic system. Testing is
accomplished using existing-Magic commands to test key database performance criteria. The ObjectStore version
of Magic performed better than the original version for some performance criteria and significantly slower than the
original version'for other criteria. The conversion effort was difficult and-time consuming due to the complexity of
the original Magic software and the ObjectStore database management system. A more specific implementation
of ObjectStore capabilities is necessary for conclusive results.

14. SUBJECT7TERMS 15. NUMBER OF PAGES

ObjectL'Oriented, Database Management System, Compute i Design, 72
TVery Large Scale Integration Deig,16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED -UNCLASSIFIED UL

NSN 7540.01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39.18
298,102



AFIT/GCS/ENG/91D-09

AN OBJECT-ORIENTED DATABASE IMPLEMENTATION

OF THE MAGIC VLSI LAYOUT -DESIGN SYSTEM

THESIS

Presented to-the Faculty of the School of Engineering

of the-Air ForceInstitute of Technology VTIC

topy

Air University INSPECTED

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems) Acs'h tr
NTIS GRA&I 5
D' C TAB 0

Just Ifica i O _ .. .
I -,

Timothy Martin Jacobs, B.S., M.S.B.A. Distribution/

Captain, USAF 'Availabillty Codes

j vail asd/or

Dist Special

December 1991 M A

Approved for public release; distribution unlimited



Table of -Contents

Page

Table- of Contents.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . ...

List of iFigures. .. .. .. .. .. .. ... ... .. .. ..... .. .. .. ....... v

List of Tables. .. .. .. ..... .... .. .. .. .. .. .. .. ... .. ... .... vi-

Abstract .. .. .. .. .. ..... .. . .... .. .. .. .. .. ... .... .. .. ... vii

I. Introduction. .. .. .. .. .. ... .. ... .. ... .. ... .. ... ... 1

1.1 -Overview .. .. .. .. .. .. ... .. .. ..... .. .. .. ......

1.2 Background ... .. .. .. .. .. .. .. .. .. ... .. ... .... 2

1.3 -Problem Statement .. .. .. .. .. .. .. .. .. ... .. ..... 3

1.4 Research Objectives .. .. .. .. ... . .. .. .. .. .. .3

1.5 Assumptions.... .. .. .. .. .. .. .. .. .. .. .. .. ......

1.6 Scope and -Limitations .. .. .. .. .. .. .. .. ... .. ......

1.7 Methodology .. .. .. .. ... .. ... .. ... .. ... ....- 6

1.8 Materials and-Equipment .. .. .. .. ... .. ... .. ...... 8

-1.9 Document Summary. .. .. .. .. .. .. .. ... .. ... .... 8

II. Databases-and Design Systems: Relevant Is-sues. .. .. .. .. ... .. ... 9

2.1 --Overview. .. .. .. .. .. .. ...... .. .. .. .. .. ...... 9

2.2 Enigineering Design and Database Management Systems ... .. ... 9

-2.3 Database -Performance... .. .. ... .. ....... .. ... 10

2.3.1- Performance--Evaluation .. .. .. .. .. .. .. .. .. ... 11

2.3-.2 Design -Issues Impacting -Performa nce. .. .. .. .. .... 12

2.4 The ObjectStore Database- Management System .. .. .. .. ... 12

2.5 the Magic VLSI Layout Design-System ...... .. .. .. .. .... 14

2.6 Summary. .. .. .. .. .. .. .. ... .. ..... .. .. .. ... 15



Page

III. Design and- Implementation of Magic U~sing ObjectStore .. .. .. .. ...... 1-7

3.1 -Overview .. .. .. .. .. .. ... .. ... .. ... ...... . ;7

3.2 Magic Design Recovery.... ..... .. .. .. .. .. . .... .. ... 17

3.3 -Restructuring of Magic Software-to Work with ObjectStore . . 23

3.4 Code Instrumentation for Performance Measurement. .. .. .... 28

3.5 Testing .. .. .. .. .. .. ... .. ... .... .. ... .... 28

3.5.1 Testing Magic Functionality. .. .. .. .. .. .. .. ... 28

3.5.2 Performance Testing ... .. .. .. .. .. .. .. .. .... 29

3.6 -Summary .. .. .. .. .. .. .. ... .. ... .. ... .. .... 31

1V. Results Analysis . -.... .. .. .. .. .. ;.. .. .. .. .. ..... 32

4.1 Overview. .. .. .. .. .. .. ... .... .. .. .. .. ..... 32

4.2 Performance Comparison of ObjectStore and Flat Data i 'iles . .32

4;3 -Conversion to ObjectStore .. ..... .. .. .. .. .. .. .. .. ... 40-

4.3;1 Problems- Encountered. .. .. .. .. .. .. .. ... ... 40

4.3.2 Effort 'Required.... ... ..... .. .. .. .. .... 43-

4.4 -Summary .. .. .. .. .. .. .. ... .. ... .. ... .. .... 44

V. Conclusions and Recommendations .. .. .. .. .. ... .. ... .. .... 45-

5.1 Overview .. .. .. .. .. .. .. .. .. ... .. .. ... .. .... 45

5-.2 Summary of Research .. .. .. .. .. .. .. ... .. ... .... 45

5.3 Conclusions. .. .. .. .. .. .. .. ... .. ... .. ... .... 45

5.3.1 Database Functionality. . ... .. .. .. .. .. .. .. ... 46

5.3-.2 Database Performance. .. .. .. .. .. ... ... ... 46

5.3.3- Conversion Cost Effectiveness .. .. .. .. .. .. .. ... 48

5.4 Recommendations- for Further Research.. .. .. .. .. .. .... 49

5.5 Summary .. .. .. .. .. .. .. ... .. ... .. ... .. .... 51

Appendix A. Raw Performance Test Results .. .. .. .. ... .. ... .... 52



Page

Bibliography. .. .. .. .. .. ..... .. .. .. .. .. .. ... .. ...... .... 62

Vita.. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. .... .... 64

iv



List of Figures

Pigure Page-

1.- Corner stitch~ing ok~iles -in a-plane .. .. .. .. .. .. .. ... .. ... ... 15-

2. High-level Magic directory organization. .. .. .. .. .. .. .. .. ... . 19

3. Data structure for-Magic cells. .. .. .. .. .. ... .. ... .. ... ... 20

4. Relationship between cell definitions and cell- uses .. .. .. .. .. .. .... 22-

5. Code modifications to function magicMain. .. .. .. .. .. .. ... .... 25

6. Sample header file -modifications from tile.h .. .. .. .. .. .. ... .... 26-

7. Magic display-of cell drfmchip .. .. .. .. .. .. .. .. .. ... .. .... 33

8. Magic display-of zcell tut4a. .. .. .. .. .. .. .. .. .. .. ... .. .... 34-

v



List of Tables

Table Page

1. DBMS Support of Engineering Design Tool Characteristics .... ..... 4

2. Benchmark performance -results for drfm database ............ .... 36-

3. Benchmark performance -results for tutorial database ............ ... 37

4. ObjectStore performance at two different levels of subcell nesting ..... .. 38

5. ObjectStore performance comparison with -two different cache sizes ..... .. 39

6. Comparison of ObjectStore and Unix flat file disk usage ............... 40

7. Man days: spent converting Magic-to work with ObjectStore ........ ... 44-

vi



AFIT/GCS/ENG/91D-09

Abstract

Despite the many advantages provided by-database management systems, many com-

plex applications spurn- their use in favor-of application unique file management systems.

This is primarily due to -the inadequate -performance of conventional database systems.

Recent -research, however, has indicated the potential for object-oriented database systems

to-fulfill-the performance-requirements whici' these complex applications demand.

Among these complex applications are engineering design systems. This thesis at-

tempts -to prove that the commercially available ObjectStore data management system

provides -the performance- and functionality necessary to support a complex engineering

design-system. The Magic circuit layout design system is modified to eliminate- its current

Unix file data management system and-replace it with ObjectStore.

The approach- to this research-effort:includes-a design recovery of-the Magic:system

and identification- of its key data-management functions. These functions-are then modified

to-take advantage of the-database managementifaciities of ObjectStore. Additional code

is-added-to instrument performance measurement of both the-original-and the ObjectStore

versions -of the Magic system. Testing is accomplished -using existing Magic commands-to

test key-database performance -criteria.

The ObjectStore version of Magic performed better than the original version for some

performance criteria and significantly slower than -the original version for other criteria.

The conversion effort was difficult and time consuming due to the complexity of the orig-

inal Magic software and the ObjectStore database management system. A more specific

implementation of ObjectStore facilities is- necessary for conclusive results.

vii



AN OBJECT-ORIENTED DATABASE IMPLEMENTATION

OFTHE MAGIC VLSI LAYOUT DESIGN SYSTEM

L Introduction

1.1 Overview

Database management systems (DBMS) have-proven themselves in a large variety of

computer applications. Today's commercial DBMSs provide an effective tool-for managing

large repositories of data while providing access to.multiple users and applications. All

users have access to the same data since- it is -stored in- a single -location. -Concurrency

control and recovery methods ensure data consistency despite multiple users and -hardware

or software failures. Applications can be easilyoadded without knowledge of the-physical

layout of the data. Overall, modern DBMSs-provide numerous advantages over alternate

data management -facilities.

Despite these many advantages, there are numerous computer applications which

continue-to spurn-the use of a DBMS in favor of their own unique application file system.

Among these are engineering design systems which are heavily dependent on large-amounts

of computer data. Few applications systems which support these design -processes are

integrated with a DBMS.

Although conventional databases are unable to adequately support these -applica-

tions, the need for some sort of database support becomes evident as the systems proliferate

among more powerful workstations and in increasingly complex engineering environments.

Object-oriented database management-systems (OODBMS), while still not widely avail-

able, have shown the potential -for providing the necessary database support for these

complex, -data intensive applications.

This thesis examines the potential of object-oriented databases to support complex

design applications. A very large scale integrated (VLSI) circuit design tool isimplemented

on a newly released commercially available OODBMS. The performance of this tool as

I



implemented on the OODBMS is compared to its performance as currently implemented

with a flat file system. Conclusions are drawn about whether an OODBMS can adequately

support a complex, data intensive, automated design-system.

1.2 Background

Computer-aided engineering design tools -have been developed for a number of ap-

plications such as integrated circuit design, software engineering, and machinery design.

Typically, such tools assist the-designer by providing graphical representations of the de-

sired object along with a narrative or symbolic description. A repository of previously

defined objects exists from which the designer may choose an object to incorporate into

the new design. A designer can start with-a high level view-of the desired object andfgrad-

ually refine the design down to-the tiniest detail. This process may occur over a period

ranging from hours to months.

The data-associated with-a typical -design contains many complicated relationships

among various data items. A complete design- object, such as a VLSI circuit or an au-

tomobile, may have -thousands of individual data components. Additionally, computer

representation of graphical and -textual data requires vast amounts of storage and is often

unique to a-specific hardware or software system.

The relational database management systems which are currently widely available

were originally designed to support business applications. As such, these DBMSs are

oriented toward individual data records and simple -data objects such as bank accounts.

The-relationships among various objects are limited-and:rather well defined. Data types

are typically numbers-or short textual descriptions. Individual transactions usually involve

only a few operations on a small number of records and relations. Such transactions are

completed in fractions of a second.

The difference between the data requirements of engineering design tools and those

of business- applications for which currently available database systems were developed is

significant. Attempts at implementing design tools on these conventional DBMSs have

produced results ranging from excessive processing time to outright failure. To overcome

2



these problems, considerable research-has been undertaken to develop a DBMS suitable for

the data representations and time constraints of complex applications such as engineering

design tools. :Considerable promise in this area has been shown- using object-oriented

database-management systems.

The ti;eory behind object-oriented database management systems-is to incorporate

the object-oriented programming paradigm-into a database system which-provides concur-

rency control, -failure recovery, relationship -modeling, and data persistency. Key elements

of the object-oriented paradigm, which simplify representation of complex applications,

include object-identity, data encapsulation, complex state, and inheritance. Many experi-

mental OODBMSs, and the few-commercially available.OODBMSs, also support complex

data types, multipleversions, and long transactions.

Table 1 presents the characteristics of an engineering design tool along with a com-

parison of support provided -by currently available relational DBMSs and-object-oriented

DBMSs. From this table it is evident that a good OODBMS can potentially provide the

databasesupport necessary for-a complex application such as-an engineering design tool.

1.3 Problem Statement

Traditional database management systems-(typically relational models) perform too

slowly for complex, data intensive applications such-as computer-aided engineering design.

As a consequence of this slow performance, most-design tools have their-own file system.

Such file systems require data management to be accomplished manually,-often by various

individuals in the design organization. Manual data management,-in turn, increases the

potentialfor errors such as deleting or-modifying the wrong version of a design. In addition,

a change to the-structure of any of the files requires changes to all programs which reference

the modified structure. This increases-the maintenance-effort required for the system.

-.4 Research Objectives

The primary purpose of this thesis is to determine whether or not an object-oriented

database management system provides the performance and functionality necessary to

3



Dehrcterist-_ ---Design Tool Traditional Obtriented
Caatrsic T Example _DBM -S -DBMS

-Complex-State References to- Akey is-required for Fundamental to the
subcomponents each sub-component. object-oriented-
within circuit. Joins are required to paradigm.

merge into a single
object.

Inheritance New adder inherits Complete specification Fundamental to the
attributes of a of the schema must be object-oriented-
typical adder and defined a priori, paradigm.
modifies them-to fit
a particular circuit.

Complex Data Graphical represen- 0., 3upports-basic Supports -graphical and
Types tation of a circuit. data types such as textual data and allows

integer and character, user to define data
____types.

Multiple Views Top level view-of Must be -defined in -the Can be specified as-a
design or, more, application. Limited-by method for the object.
detailed look at a record oriented retrieval. Data is more easily
sub-component. retrieved using

object-oriented-storage
_techniques.

Multiple - Current-and May support multiple Generally-built-in as-a
Versions historical versions. versions of individual- tree structure with root

records. node representing a
version. Tree includes

-all objects which make
__ _ -up the version.

Phased Top down design. Not supported. Entire Refined:schema can
Development schema must be defined inherit characteristics of

a priori. a higher level and
_____modify for, next phase.

Large Data Thousands of - Limited only by rhysical- Clustering by object
Volume sub-components-;ri storage;Iiowever, reduces the number-of

a circuit. record-ofiented-storage disk accesses. Complex
may limit - the-size of data.types remove
record, ckusing-multiple -object size restrictions.
record retrievals for-a

_ single object.
Long- Designer takes-two -Built around short - More appropriate
Transaction weeks to modify a business transactions. concurruncy control and
Duration specific circuit Inefficiency and failure failure recovery-methods-

design. -occur with long used-to support long
transacti6ns. -transactions.

Fast Thousands of sub- A single -view requires Designed-to retrieve -
Performance components are multiple -joins-and many large amounts-of data at

-retrieved- and-dis- -individual accesses. once.
-played in seconds.

Table 1. DBMS Support of Engineering Design Tool Characteristics

4



support a typical-computer-aided design tool. To fulfill this objective, the design tool must

maintain all-functionality provided by the existing.file management system. Performance

of the design- tool- must remain acceptable to-the tool users. This is specified.as- no-more

than a-ten per cent increase in response- time-over -the current implementation.

This thesis should- also demonstrate that convefsion of a-design tool-application -from

a-unique flat -file management system to an OODBMS-is notra difficult-or time intensive

task. To meet this goal, the time-and -effort-spent converting to-the OODBMS must -be

cost effective with -respect to- the increased utility of a -Y0 abase management system and

the reduction in futuresoftware maintenancecosts.

1.5 Assumptions

If the results-of-this thesis are4to be applied to other engineering design tools, the tool

implemented (i.e. the Magic VLSI circuit design tool) must be typical ef-ao"'engineering

design -tools.

Due to the inexactness of the available techniques -for measuring-results, assumptions

are made about disk access -times and- actual prodesir.g times. These assumptions are

described and-justified along withzthe results-obtained.

A similar lack of preciseness and a large amount of subjectivity occur when calculating

the added value -of a DBMS -and When estimating future-maintenance costs. Assumptions

regarding these values will also be-destribed- and justified along with- theresults.

1-.6 Scope and Limitations

This thesis implements-a direct conversion of code-for theMagic VLSI circuit design

tool from the-existing file system to the ObjectStore object-oriented database management

system. This includes conversion of C :code-for- compatibility with the ObjectStore C++

compiler. Software redesign -is accomplished--only as necessary to make-Magic work with

ObjectStore.

5



No-attempt is made -to -improve thetperformance-of Magic-by-modifying -the-existing

software structure. All algorithms and data structures remain unchanged. Data structures

are added only to-replace current code which- directly- accesses -physical data files.

1.7 Methodology

Magic is a VLSI circuit-layout design tool which is commonly used at the Air Force

Institute of Technology -(AFIT) and other U.S. institutions. A-number of pepple at AFIT

are familiar with the functionality and performance-of this-tool. It, contains-the character-

istics of a typical -computer-aided engineering -design system as- described--in Section 1.2.

Magic-manages data with its own unique-flat file-system. Because of-its -familiarity among

AFIT personnel, its-typical-design -tool characteristics, and-its-current-fiat file management

system, Magic is selected-to test the potential of an object-oriented database management

system.

Few commercially available OODBMSs currently exist. Among-these-is the Object-

Store database management system developed-by Object Design Incorporated of -Burling-

ton, Massachusetts. This OODBMS-has been made available toAFIT and-is-used for-this

thesis to implement the Magic VLSI circuit design tool.

The first part of this thesis requires -implementationvof Magic with the ObjectStore

DBMS. This-implementation- follows- the steps -described -below.

-1. Accomplish- a design -recovery'on the Magic- system-. This-provides an understanding

of the software structure- and-functionality and- is necessary since a limited amount

of design -documentation currently exists;

2. Replace existing file -input and- output with persistent database structures. This

involves -eliminating all 'file input and output and making program data-structures

persistent. If no data-structure exists because data is-directly extracted-or replaced-in

aiile, then a-persistent data structure is'created which is similar-to the-file structure.

3. If necessary, redesign software which can not be implemented with ObjectStore.

Redesign- is accomplished in a manner similar to existing Magic code-with emphasis

on generally accepted- object-oriented design procedures.

6



Performance-comparison of the existing implementation of Magic to-its implementa-

tion using ObjectStore requires computation of performance characteristics. These-calcu-

lations involve the tasks described- here.

1. Instrument code in critical regions-of the software to measure-processing time. This

code must occur in-the same place for both the existing implementation of Magic and

the ObjectStore implementation. In general-, those sections of software most likely

affected by the database management system are instrumented for processing-time

measurement.

2. Instrument code in the-existing software to measure disk accesses. Accomplish- this

for those segments of code involving file-input- and output.

3. Extract disk access information from the ObjectStore DBMS. This.extracted -infor-

mation- involves the same data as-the file access -data in item 2 above.

The second objective of-this thesis is to show that the conversion effort-is cost effective

with respect-to reduced future maintenance and increased utility of a-DBMS. Measurements

for these comparisons are reached with the following steps.

1. Identify time spent converting the-existing Magic system-to anOODBMS.

2. Subjectively evaluate the difficulty- of the conversion based on the learning curve for

ObjectStore and- the actual code modifications which were accomplished.

3. Subjectively estimate the benefits of having Magic implemented with- aDBMS. This is

accomplished by interviewing-users-of Magic and by-researching other organizations'

uses of design tools. The results of the interviews and research are interpreted as to

their compatibility or incompatibility with i DBMS.

4. Subjectively estimate the reduction of future maintenance costs based on existing

studies of the cost of maintenance- and-consultations with software personnel- who-

have experience in software maintenance.

7



1.8= Materials and Equipment

This research effort utilizes the-ObjectStore (version 1.1)-database and development

facilitiesion a-SunSparc H-workstation. ObjectStore provides-all tools necessary to convert

the-Magic system. The Magic- software is-also -available -on a Sun-Sparc II workstation for

modification-and testing.

1.9 Document Summary

Chapter 2 describes previous research on object-oriented- databases -in support of

computer-aided design applications. Thischapter~also describes the functional aspects of

the Magic VLSI layout system and the ObjectStore DBMS. Chapter 3 presents- a design

recovery of Magic- and: discusses- the methodology -employed in implementing Magic with,

-the ObjectStore database. A comparison of Magic -performance-and -the effort involved

in conversion to ObjectStore-is -contained in Chapter 4. Chapter 5-includes -conclusions

reached--regardingAthe objedtives-of this thesis -and recommendations for -further:research.

8



1L Diztabase's and-Design Systems: Relevant Issues

2.1 Overview

The field- of'ibject-oriented dAtabases-is relatively, new-and-few implementations have

actually been put -into practical use. This chapter -reviews existing -research on- object-

oriented& databases -with -engineering- design- systems-and discusses the potential- benefits.

Additional database-design issues arer-discussed-a~long-with-their-impact' on performance. -A

-brief -overviewis presented of the Mvagic layout design -system-and- the ObjectStore database

rnanagement-systdm.

2.2 En~gineering Design- and Database A'fanagement Systems

Developers offautomated-designsystems-have-lonig-be-en-sear-ching ---for-database-man-

agement systems Which -meet the performance -requirements necessary- for manipulating

complex engineering entities. Thomas Sidle identified- Weaknesses of -Comrnercial-Data

Base Management 'Systems in Engineering Applications (17) as, earl'- as 1980. These

weaknesses include -slow reon, ecssive discipline- imposed on the -software develop-

ment -activity, -difficulty~ of satisfying -engineering requirements, and- organizational prob-

lems associated with -database-supp drt. The primary- reason- for- these inadequacies- is -the

orientation ofexisting-DBMSs-towaid business--applications.

A typical- business- database coiisists -of a large-number~of structurally simple-records.

Most transactions Involve simple requests to-locate and perform -simple operations on-

a- small -number of f-ecords. The record -structu res, operations, concurrency -control tech-

niques, and failure recovery -methods -of coniventional'DBMSs are-d-esign~d-to-s-uppo-t these

business databases. -Inefficiencies~and---failure result when these-DBMSs-are used -to-suppor-t

-en~gineering -design -applications. (-17)_

-Instead of conventional 'DBMSs, mnany-database experts- -have- proposed- -Object-

Oriented-Datab-ase-Manageme nt -Systems -as more-appropriate for engineering -design -sys-

temns. According -to. Sandra- Heiler -et-al- (4), an- object-oriented -approach- to-data manage-

ment supports engineering -design- requiremnents by allowing users to define -relationships

among- engineering- objects and by--providing facilities for -defining- complex objects and

9



-version configurations. Changes -to data-items- are controlled by limiting the operations

that can be applied-to an- object to those which are specifiedin the object type description.

By allowing the user to-specify the behavior of an object, OODBMSs support -triggering

of changes to derived objects. Operations -can also be specified for logging changes to

-an object and-for defining poicies for relationships between objects. 'Theobject-oriented
paradigm provides a bettermodelfor mapping to the-mental modelofthe users. System

-maintenance is simplified since "changes to the-implementation of one object or object

:type will-not require changes to others (4:339)." Using -the inheritance characteristic of

:object-oriented DBMSs, -new objects can be added or old objects-modified as requirements

are- refined. Different implementations-of an operation or-data structure can -be defined

without affecting the interface of the object -to-other objects.

Rajiv Gupta -et at (3) -point out similar advantages-of an OODBMS. The object-

-oriei.-ted -paradigm mimics real-world=-objects, encourages gradual evolution of a design,

and-encourages code reusability. -By storing -powe'fuLdata;structures persistently off disk
--the needfor local memory-resident: structures is eliminated and- retrieval can be:optimized

:by caching entire objects-in memory. Aggregationallows repraeentation of complex objects

wwi--is a _ml bet
which reference a number of constitueilt objects. An: object wich Aspecialization of

another object can -be modeled such that it inherits the zharacteristics of the'highetJevel
-object. A group ofobjects can be represented- -a dcas such :that -each instance --of the

class has-the same attributes-and operations. Gupta et di'also point out a few drawbaCkf,

of OODBMSsi These -inclue Increased use-of disk -space, slower response than file-based
--CAD systems, anddifficulty i finding errors hil:.len in ap .-,b t.cted implementation-layer

-of afi object.

2.3 Database Performance

If database management systems-are to replace -the unique file management systems

-which arecommon -in engineering--design applications, the-performance of these DBMSs

-must be comparable to-the edsting systems. The following sections discuss methods of

evaluating database performance and some design-issues which may affect-the performance

of object-oriented database systems.

10



2.3.1 -Performance Evaluation. Much -of the -literature on -databaze performance-

evaluation addresses the -results-of standard -benchmarks as-applied -to variouls-DBMSs.

While most of these benchmarks~refiect tvy,. 2 .,i pplications forrelationial DBMSsR.G.G.
Cattel has developed-an aprahfrr u~h efrac f-obiject-oriented- data-

base- systems=-(2). Bef:bre discussing c...p ,'hlowever, -Gattel points-out that '!The

-most accurate measure of performranc-for, ineering applications, would be--to-run an ac-

tual application, representing the data 3a j- -.a1ner best suited to each potential DBMS-

(2:364)."

Cattel -proposes -a database of -parts on- a circuit -board- with -connections between-

them. He- sumnmarizes- the three ni,.jt important ineasuresof performance in an object-

-oriented -DBMS-as:

Lookup- and- Retrieval. took -tp -and -retrieVe-;an object -given -its idenitifier.

TMraversal TFind, all- objectsfin the hierarchy -of-a selected object.

1Isert. -Insert -objects -and-- their relationships to. other objects.

To-Meet the- performance requirements of engineering applcations, Cattel suggests.

-that a DBMS must be -able :to perform: 1000 -random operations -per second. --ie- noted-that-

none-of thie-OODB3MS--implemenitati-ons ini researciror -prodluction environments- met his

criteria when- his- paper was vWritten -in 1987.

Berre and Andersop.'sityperModel-benchfinark-:(1) -preseiits a-similar approach to--per-

_forifiance-measurement-. In addition to -the-operatio As proposed by=Cattel, the-flyperModel-

-benchmark -includes:

Sequential- Scan. Visit each- o-jctn the database sequentially

Ciosure-Operationsi Performy-operations on-all- objects- reachable -by a-certain--relation-

ship-from-a- specified object.

Oen-and-Close. Time to open-and ciose the-database.



2:3.2- Desig.,z issues Impcqting Performhance. One-of thn key-mdenign .issues- affecting

Q-ODBMS performance -is whether or-not to-cluste~ sub-objects and-:their referencing ob-

jects -in- physical- storage. Jhiingran -an-,d:Stonebrakeri-(6)- address this- A'iuciwd:the effect- of

caching. They ru na series ofexperfiments-using- a-relatioqiia DBMS-and-a hierarchical- data

structure in, which thenumber of hared sup erobjects--a-,,d sub objets-is--varkd-;. Jhingran:

and Stonebraker -show- -clustering -to be-advantageous only when -sharing-of -subobjects-is

relat- ely-low. When- -retrieving -objects~in a homogeneous collection, clustering decreases-

performnance -since-the objects are stored-with-their -sup~erobjects an,' remio-longer cbntigum

otis on disk. -Caching, on the-oth er hand, is -generally viable- excep, -whe -n a Iarge -number

of-updates -is made.

Another design- -issue- affecting, performance~~s the -use--cof indexing. Kimn -el-al-(7)-

evauat tQ~dffrent idexing-techniques. The-llrst-of these-i§-an-intdex m-aintained--on an-

attribute of-a-single- class. Kiin et-altidentifyv-this-a singile-c~lass index.-A- class-lzieira-rchy-

iizdex-is xnaiiitained-on a n attribute of all classes-in--a-clas hie-rarchy -rooted at- a particular-

class. Two-different- cases were studied';with-the same set of~ange-values-varied for each

case. In one -case-all of-the- ran fkey- value aesumd- to Vb n -one-of-the ~casses

in- -thelcierarcijy. The -second- case -scatters-the -range values -evenly -in twciciassem Tn- both-

cases- class-hicrerchy indexing generally. -results i -fewer Index -pages being ftched: "or a

given- query-if-there-are-at least two-classes- mna-class -hierarchy.

2-4 -The ObjectStore -Database ManagemehtzSystem

Becausi- of -the -complexity -of-object-oriented- databases- and.-the imnmaturity-of the

feld fwcmecial -available o b rienited--databases-exist. -Of-thse -that do-exist-,

many re mrelyobject-moriented iuterfaces to a-relational database. Only- ecently have-any

databases -been- commer-cia11y--released- with memory- managemxent -techniquesf-suitable for

object-oriented -database-managemnent. -One -such database management syste lni is Object-

Store,-an object-oriented database--management system'released-in 1990, witli an-upgrade!

rcleasein- 1991, by Object. DesignJncorporated-

Objct~oresuport iiostof heobject-or!inted& database- characteristics -listed- iwi

Table 1. The- database -design-langu age.-is -C++ which providessupport for compiexstate,



Inheritance,and user defined -data-types:(18). -Specific views for-an object can-be-expressed

in the-C+-i-+functions-associated with -that-object. ---et~or aspovesaversioning-

mechanism -to support ibug -transactions-and mnultiple versions. To landle-large amounts-
odata, Obettr ssammr-mappn -n aeswapping mechanism which can be

customized -by the- database designer.-(-13)W bectStre does not-support schemarevolution.

Any change-to, a schema-makes data creacd with-the old- sch ema unreadable -by the-new

program. (16)

In-addition-to its -uniquely- object-oriento~d- characteisticsOjc-oe lohsta

ditional database -management facilities. All access -to -the database-must occur -within a

transaction-. All data manipulationt which occurs withimL-a transaction is~not visible-out-

side of -the -transaction- -until- -the trani-.~dion-is complete; This avoids- the- potential-.data

integrity--problems, which- can oc -r~if -two- separate applications-modify -or use -the-same-

piece-2f-.data-simiiltaneously. Data-tintegrity-is -also-ensufed -thiougjh--relati~ns anid inverse

relations vwhich synchronize related--objects -when one- of -themn is n-iiodified. ObjectStore

provides-tools for managing-collections (groupsohmGeeu-at) and- supports -query

processing over-these collectionis. (13)-

Object-Store's- V-ta eoy Mapping.Architectr ( M)iseyoisprfo-

mance. This- architecture allows -persistent -data- store-d-In ObjectStore -- be handk-in

the-saioe-way as non-persistent-(transiefit) data. Laryge amountts-of-idata -can-be-retrieved-

and manipulated -with mhinimral- overhead- through- -it~lmemory -management. When-
refreneddat i no i~man emory,-a page fault occur-s-wich-is int erceptedi by Object-

Store sothat- it can-retrieve -the daa rom -the -databasent -.memory. The overall-effc

ofithe -memory mnapping- architecture- is-to- provide -the- developer -a single viiew of -me mory
- basical exadn he -proga meoyto thea-size of the database. -(13)

For-an- application tlo-work -With- ObjectStorethree-auxbpi-ry procai ae required-

the Objecf~tor-e Server the Difectorr Manager, -and- the- C'acle Manaqer. The Server

bandes al sorage and& retrie val bf -persistent -data. The Directory Mngrmng

O0bject~tore--directories mfuch -as fl x-managesi its directories. The Cache Manager-con'trols

swapping of--data br'tween-the cache- memory asoiated with anapplication and-te virtual

database-memory. _(13):

13:



-Object~tore-Provides interfaces to.-both -C and--C++. It also has-its own Data Defini-

tion and- Maniipulation--Language-(DIML) which is-a;-super~et-ofp C++.; The.-DML -simplifies-

-+ -library-routines, -such -as sett-ing the-database -root--and controllng -trnactions, by-

replacing a sequence of--C++-commands-_with .a single DML command.

2._5 The Magi LSI Layout Design System-

-Due to~the- complexity and-cost associated with theidesign and-creation-o-VLSI-cir-

cults, computer-assiste-d-.tools-are-essential. Oiie of the key-steps-in the circuit- development

process~is design-of a-physical -layout of the-circuit which can,-be directly-implemented on

a-chip. Tobols-for manipulating-- an&verifying -this design-are-necessary to -keep -track-of the

numerou-s components- and connections -and tomnmz6h iko-teci aln fe

-it ihas -been- -manufactured. One--such- -tol -is. the -Magic VLSI- l-ayout -system >Which-; -was

originaly developedat-the-TUniversity-of California- i Berkeley -With- -he laetrelease:l-rom-

-Digital Equipment-:Corporations W ester Research Laboratory in- 1990.

The--purpose--of Magic 4is-to--increase the power -and- flexcibility of- prevlious layut

editors- so- that designs- can- be -entered- quickly-And -idfe esl.(16) Toaccoxhipish_-this-

goal,-Magic-ptovides -basic- comlmands -foracreating, C-pyng mo difying,:and- deleting circuit

components alongwwith .-apabilities~or-automated- circuit .-routifig-and-continuois- checking-

ofdesign-rules. -Cicuits- can-.be-cteated compl--etelY -from -scratch-or through hierarchicaI

-inclusion -of any -numberzof sub-comrponents. File extraction-to-ols have -also -been- included-

as part of Magic for corn-patiBility -with --crcuit testing -and mahufacturingizsystems. (10

To -imp rove p erformance-anidt simpihfy -th-e designer'sg viewEof am-circuit, Magic-iimp-le-

ments some-unique-features. The -geometricah--conte-nts-ofla;. circ-uit -afe repfesented- using-a

technique -called cb-rnerstitching. -In thisitechnique- -a circuiit- contains-a- number-=of corner-

stitched- -planes, each -of-iiich consists- of a miumber of rectangular -tiles -representing -the

-physical materi-al to-be included inithe-actual circuit- These-tiles are-the-l fndamental- data

units represe nted -in: the databiase. Each t-ile-is li-nked-in-its ?ower-.-left- c-rnef-to-thise-tiles-to-

-itsieft-:and bottom. Another link in -the--upper -right corner -connects- the-tilesl-o-the right

and top. Figure-1 demoiistrat-es-hoW-thrd filled in-til-es (eniclose4 with-sohiddi nes)-Would be-

stitched -together With -blank-tiles (dashe d-line) in asingle plane. -Cor-ner-stitchinfg permnits

141-



-451

Figure- 1. Corner -stitching of tiles -i ha -plane (5

search operations-to beiperformed mor -fiiitl91) hoe e itrig truhllies

-incll mayzrequire -traiversing-a= imber of subcell hierchies-in -the daabs.

-a- the inmanuifacturie -of -a -chip,--the- various-Iniaterials -which- make-up -the- electrical

components _of the-chip are- apled in-la4yers-with- masks wvhich -spedif exac tly where-each-

materil willbe plced.- Many--cirtuit-dbsign-ysteins-presen ithee=ak toted er%
exacly~ tey ill appa on-the chip. This-gives- he-designer little- nformnatii -abou tthe

actual electricdal function -of the-design. -Magic, however,.abstracts thsexiask- laers inoa

style referred-to-as Iogs. -The! elogslare-simnila-rto a gymbollc cifuit -layout which--a deigneff

uses-to-inderstand the 1ectrital fihctio -al]tyVof the circuit. The priiiiarylidiffer-ence-is -that

each component ig seem in-its--actuaLl-size- and =,locatiWon. (=15)

2;ff6 Summagry-

-l-ased---n--the -chairacteristicsio f engineefing- design--systdins -and- thekey comnponentg-

ofithe 6bjectmoriented-o -muting- pradigm objectrorie nted-database mana e- nt systemtz
apea el _itefo-Jor rting these~design -systems. -Some--attdrmptsihave- e--- made

to-demo-nstrate-the improved-performante-ofzOODBMS5, but- none- of these-attempt -has-

-successfuly modeled-av tyical design-app licationA to murethis- p-forrnace. The-Mgi
14yout-desigh:syster uases- a.-circuit ;desig r epieetainWicr elsiedfra bet

15-



oriented database system. The ObjectStore datab-se management system:is one of the few-

commercially available -OODBMSs available. It supports,most-of the utilities'expected6f

an -object-oriented database system and~is suitable'for implementatibn of the Magic layout

system; Using Magic-and ObijectStore, this-thesis provides aitypical design application fof

measuring object-oriented database performance.

16



II. Design and Implementation of Magic Using ObjectStore

3.1 Overview

The implementation of Magic with ObjectStore requires application of recognized

software engineering principles. The first step is to determine the design of the Magic

system and which components require modification. This design is then modified so that

it can be implemented with ObjectStore. For performance measurement, the code is in-

strumented with timing commands where appropriate. Testing is then accomplished to

verify functionality and to compare performance with the original Magic system.

3.2 Magic Design Recovery

Magic is a large software system consisting of over 250,000 fines of C source code in

over -0 separate Unix directories. To maximize code efficiency, many of the data structures

and algorithms are extremely complex, often using obscure C language characteristics.

The design documentation consists of a maintainer's manual with a brief description of

the directory layout and functionality along with in-line comments in the source code. As

such, understanding the system organization and design is a difficult undertaking.

In approaching a design recovery of the Magic software system, the first step is to

review the existing documentation. This review reveals a combination of functional and

object oriented problem decomposition. The object-oriented modules, such as the window

manager and databusc managcr, encompass all data structures and services for an object

completely within the module. Other modules like plot, plow, and wiring include all

procedures necessary for accomplishing the designated function.

Each module has its own subdirectory except for some utility and other miscella-

neous functions which are grouped together into combined subdirectories. To simplify

understanding of the overall Magic system. these modules have been grouped into "super-

modules" which represent the main services provided by Magic. Of greatest importance

to this thesis is the database management super-module. Most interfaces to the Object-

Store database management system will take place within this module. Figure 2 shows

each of these super modules and indicates whether a module interfaces with the database

17



management module. In this figure, the label at the top of the box represents the super-

module name and the lower portion of the box lists the individual modules within that

super-module. Lines to each ir lividual module indicate interaction with the database

manager.

While most modules interface with the dat,-base manager, implementation with Ob-

jectStore affects only a few of these interfaces. Most of the ObjectStore administration

(such as opening and closing the database) i.,ust occur within the main module. Since the

window manager does all window manipulation associated with displaying a circuit that

has been retrieved from the database, its performance is closely linked with the database

manager. To determine the effect a command will have on the database, and to ensure

this command continues to have the same effect with ObjectStore, understanding of the

command interpreter is also important. Finally, the utilities module is of concern since it

includes functions for abstract data types such as hash tables and lists.

Analysis of the C header files for the database manager reveals the primary data

structure shown in Figure 3. Here an object is represented by a box with the object

name in the top section of the box and its attributes in the lower section. Diamonds

represent relationships between objects. The key component of a Magic circuit is the cell

definition (CellDef). This includes descriptive fields such as the cell name, associated Jhip

technology, and time of last update. It also includes pointers to the p, .zes which contain

the geometrical representations in the cell; a pointer to a list of labels associated with the

cell; a pointer to a list of cell instances (referred to in Magic as cell uses); and a pointer

to a hash table of all instances of other cells which reference the cell. Each plane also

has pointers to a corner-stitched list of tiles which are contained in the plane. Normally

tibody specifies the paint in the tile; however, tiles in the subcell plane include a list

of pointers to the subcell uses which overlap the tile (CellTileBody). All cell definitions

currently active in Magic are contained in dbCellDefTable, a hash table which is visible

only to the database manager.

To better understand the relationship between cell definitions and cell uses, Figure 4

provides a simplified example. Cells A and B each represent cells that have cells X and

Y as subcells. The cell definition of X is named CdX. It references cell use CuX3 with its

18



file window command interrupt
porting manager interpieter handler

calma dbwind commands

cxif cmawind parser signals
ext2sice windows textia

extflat
extract
resis

driverutlie

main

desigitilul

checker poesr

drc po

technology

tech net2ir garouter debuzg

Figure 2. High-level Magic directory organization

19



CeIlDef cd-parents CellUse

cd-flags cu..expaxidMask
cd-bboxc cu-flags
cd..filc, cu-transform
cd..naine -< udfcuid
cd-dcient cu-array
cd-timestamp cu-bbox
cd-tecinology cu-client
cd-props cu-delta

cu .extuse>

Label

lab-.type
lab..rect

Plane______________ lab-pos

lab-.text

ilasliTable

lab-.next
cu-ids

plileft 
t-spl-top

pl-right
pl-bottom

Tile

'i-bcr-tll

ti-client it

Figure 3. Data structure for Magic cells

20



cd-parents pointer. It also points to a hash table which only includes cell use CuXi. This

indicates that CdX is not referenced by any cells other than itself. Cell use CuX3 is the

cell use associated with cell B. The cu.parent pointer to cell definition CdB shows this

relationship. The cu.def pointer in CuX3 points to cell definition CdX, of which CuX3 is a

specific instance. Each cell use also has a cu.nextuse pointer which points to the next cell

use associated with a particular cell definition. In this case, CuX3 points to CuX2 which

points to CuX1 where the list terminates with a null pointer. CuX2 represents the instance

of CdX in cell A and CuXi represents the instance of CdX associated with cell X. Each cell

definition always has an instance associated with itself. Cell definition CdA provides a

better example of the cd.idHash pointcr. In CdA this points to a hash table of all cell uses

that are included in cell A. This includes an instance of the cell itself (CuAl) as well as each

of its subcells (CuX. and CuY1).

While the basic functionality of the database module can be determined from the

limited documentation in existence and its data structures can be determined from the

header files, actual understanding of the call hierarchy and effect of commands can only

be accomplished by tracing the path of input commands through the Magic system. Some

additional information is also obtained through frequent use of the Unix grep and calls

commands. The functons of the database module most likely to be affected by implemen-

tation with ObjectStore are described below. The source code files associated with these

functions are listed in parentheses.

* Create and delete cell definitions and cell uses (DBcellname. c).

a Create and maintain the cell definition table (DBcellname. c).

* Write and read cells to and from disk (DBio.c).

e Create, split, join, and delete cell planes and tiles (tile.c).

If the database module was truly object-oriented, design recovery would end here.

Unfortunately, many modules throughout Magic directly access the data structures of

the database module, thereby making the interface less well defined. For instance, the

initialization routines in many modules directly access planes within a cell. Similarly, each

21



Cell~se

cu-id cu-def cu-nextuse cu-parent

CeIlDef

cd..name cd..parents cd-idllasli

Example:

A B
CuAl

L OuYl

Fiue .Reaiosi btee el efntonCndcllue

CdX C22



window has a cell instance associated with it which the windo, manager modifies without

going through the database module.

To test and debug the database module, one must understand the data flows between

the window manager, command processors, and database manager. The database window

manager command interpreter (DBWcommands function in program DBWprocs. c) i. ohe key

procedure in this process. If a button is pressed, the current button handler is activated

from within the database window manager to interpret the button, perform the desired

processing, and update the window as appropriate. If a text command is entered, it is

first parsed by the text processor (textio module). The database window manager then

activates the selected command processor to accomplish the requested processing. Any

updates to the window are then initiated from the command processor.

3.3 Restructuring of Magic Software to Work with ObjectStore

For this thesis, the only modifications made to the Magic software are those neces-

sary for Magic to work with the ObjectStore database management system. This requires

persistently allocating all transient database structures and providing an entry point into

the ObjectStore database. In addition, the ObjectStore database file must be opened and

closed and transactions must be specified such that all database accesses occur within a

transaction. This first phase of implementing Magic with ObjectStore requires the follow-

ing changes. (A complete summary of all modifications to the Magic software is contained

in the OSmagic Programmers' Manual (5)).

* Where a database element such as those in Figure 3 has been allocated with the

procedure MALLOC, remove the MALLOC and replace it with the ObjectStore Data

Definition and Manipulation Language (DML) persistent new command.

/* replace MALLOC with ObjectStore DML new

* MALLOC(CellDef *, cellDef, sizeof (CellDef));

cellDef = new(magicdbi, cellConfig) CellDef;

23



Similarly, where a database element is deallocatcd with FREE, remove the FREE com-

mand and replace it with a DML persistent delete command.

/* replace old memory deal3ocation with DML delete
,

* FREE (cellUse->cuid);
*/

delete cellUse->cu-id;

* Make the cell definition symbol table (dbCellDefTable) the entry point into the

database. This is accomplished by declaring it as a persistent variable.

persistent<magicdbi> osHashTable *dbCellDefTable = NULL;

* Declare and initialize (open) the database in the program main. c and include the

main procedure within an ObjectStore transaction. The original attempt at accom-

plishing this was to enclose the contents of magicMain (the main Magic procedure)

within a DML do-transaction statement; however the main Magic procedure is

terminated from within another module, thus preventing the entire main procedure

from executing. As a result, the do-transaction statement never ends and no data is

written to the database. Resolution requires separate transactions to initialize Magic

and another transaction (main-tx) for the main Magic process. Note that a different

format is used for the main transaction. ObjectStore allows a transaction to be en-

closed within the do-transaction statement or started with transaction: :begin

and ended with transaction: :commit (to save the results of the transaction) or

transaction: :abort (to restore the database to its state prior to the transaction).

Code modifications to open the database and implement ObjectStore transactions

are shown in Figure 5.

* Close the database and commit the main transaction in the procedure MainExit.

transaction: :commit(main-tx);
magicdbl->closeo;

In an object-oriented C++ program, implementation of these changes may have been

rather straightforward and uncomplicated. Unfortunately, Magic is not such a program.

24



/* Open database "/osmagic/magicdb. */
magicdbl = database: :open("/osmagic/,.agicdbl",0,0664);

dotransactionO) {
workspace: : set-current(user-ws);

} /* end of transaction */

/* begin initialization transaction */

do-transaction() {

mairInitBeforeArgs(argc, argv);
mainDoArgs(argc, argv);

mainlnitAfterArgs (;
/* end of initialization transaction *1

/* begin main transaction called "main-tx" */
main-tx = transaction: :begin(transaction: :update);

TxDispatch( (FILE *) NULL);

mainFinishedo;

Figure 5. Code modifications to function magicMain

The first difficulty is that Magic is written in C rather than C++. C++ was designed

to be compatible with C (18); however, this compatibility is not complete. ObjectStore

has a C library interface, but this does not allow one to take full advantage of object-

oriented programming techniques. Any program which contains ObjectStore DML must be

compiled with the DML compiler. This compiler is a slightly modified C++ compiler. Thus

all procedures in a program containing ObjectStore DML, whether affected by ObjectStore

or not, must be modified for compatibility with C++. This requires type specification of

all function parameters. In many cases, Magic passes function pointers as parameters,

which complicates type specification. Also, for a C++ procedure to be linked with a C

program, the linkage must be specifically defined with an extern "C" type specification for

the function declaration. Thus, all of the forty plus header files containing C++ function

declarations must be modified to include the extern "C" qualifier. This is accomplished by

defining a preprocessor constant of _ASMAGIC in a header file (osmagic.h for the programs

using ObjectStore DML). Other header files are then modifie ' to include the extern "C"

25



#ifndef _OSMAGIC
/* it using old magic code, use "C"I function declarations */
/* Jacobs 02/08/91 */

extern Plane *TiNewPlaneo;
extern void TiFreePlaneo;
extern Tile *TiSplitXo;

extern Tile *TiSplitYo);

#else

/* use function declarations modified for compatibility with C++ */
/* Jacobs 02/08/91 */

extern "C" Plane *TiNewPlane(Tile*, CellConfig*);
extern "C" void TiFreePlane(Plane*);

extern "C" Tile *TiSplitX(Tile*, int);

extern "C' Tile *TiSplitY(Tile*, int);

#endif

Figure 6. Sample header file modifications from tile.h

qualifier for DML programs if _0SMAGIC is defined or just the qualifier extern if .0SMAGIC

is not defined. Figure 6 shows modified code from tile.h which demonstrates the changes

required for each header file.

Other procedures outside of the database module also must be modified due to de-

ficiencies in Magic's object-oriented implementation. Additional storage is allocated for

a cell in the string duplication (strdup. c) program of the utilities module. A persistent

version of this program (osstrdup. cc) is required for any string duplication withi1L the cell

structure. The cell labeling (DBlabel.c), cell painting (DBpaint.c, DBtiles.c), and cell

subroutine (DBcellsubr. c) programs also allocate cell storage which must be persistent.

Since the cell symbol table is used as a database entry point, it must also be per-

sistently allocated. The hash table abstract data type (ADT) (hash. c), of which the cell

symbol table is an instance, is also used for non-database functions, so a separate, per-

sistent hash table ADT (oshash. cc) must be created and used for the cell symbol table.

This symbol table only uses strings as keys, so the C union in the original hash table

ADT can be replaced with a string. This simplifies DML implementation by eliminating

the need for union discriminant functions.

26



The maze router (mzrouter) iitialization procedure attempts to directly access

planes within a cell. The first time the initialization procedare is run on thL database,

the cell and planes become persistently allocated. The mzrouter initialization procedure

must then be modified to access the persistent planes by traversing the cell hierarchy.

Modifications up to this point have been necessary for Magic to work with persis-

tently allocated structures in an ObjectStore database. Previously these structures were

transiently allocated and could be cleared by quitting Magic or by reading the cell again.

Persistent allocation eliniinates the possibility of deleting a cell or removing changes that

are unwanted. To provide these functions and other input/output functions in a manner

similar to the original Magic system, ObjectStore's versioning capabilities are required.

Versioning requires definition of a configuration to be versioned and persistent

allocation of workspaces to control the versions. For this implementation of Magic, the

global workspace contains the latest frozen version of a cell, much as th flat disk file does

in the original version of Magic. New cells are created and modified i:, the user workspace.

The user wolkspace is set as the current workspace for the duration of the Magi.. program.

The obvious choice for a version configuration is a cell definition ,ud all of its sub-

components and subcells. A sj rob(, table must be created for the ".ll configurations so

that each cell definition can be associated with its configuration. Whenever a cell is read,

it is checked out of Lhe ghct.a. vorkspace into the current user workspace. Writing a cell

requires checking the cell I, ,ck into the global workspace. To hlush a cell, the version in

the current user workspace is destroyed and the old versioJL is :hecl'ed out of the global

workspace to replace the destroyed version in the user workspace. New procedures which

search the configuration symbol table i.nd check the appropriate configuration in or out of

the current workspace are needed.

Even with versioning, some commands can not be made to work exactly like the

original Magic system. Both the write and save command write a cell to disk. The save

command allows the cell to be saved under another name. Both of these commands allow

further modification of the cell after writing. These comma.nds must be modified to work

with ObjectStore. Save will check the cell back into the global workspace, but will allow

27



continued editing of the cell by checking it back out. Write will check the cell into the

global workspace and prohibit further editing.

In the original Magic, cells are deleted by using the Unix rm command external to

Magic. This is not possible using ObjectStore so the new command remove cellname must

be added. This command will only delete a cell definition if it is not used by any other

cells.

3.4 Code Instrumentation for Performance Measurement

To compare the performance of Magic with and without ObjectStore, a method must

be provided for measuring this performance. The Sun operating system provides profiling

options which are implemented by the compiler. This profiling provides detailed timing

and usage statistics on every function in Magic. Unfortunately, due to the size of Magic,

inteipretation of this information is time intensive and complicated. Since such detailed

information is not necessary, the code itself is instrumented at critical points to measure

only that information which is essential for comparing performance of the two versions of

Magic.

All commands and button input are processed through the command interpreter

module. The TxDispatch function in the program txCommands.c dispatches all Magic

text and button commands. This allows timing statistics to be initiated prior to calling

the command processor or button handler and terminated immediately following the call.

Similarly, initialization statistics are measured by surrounding Magic's initialization pro-

cedures with statistical commands. A program (CommandStats. c) is written for gathering

statistics. CommandStats makes calls to the Unix functions getrusage and gettimeofday

and calculates processing time and wall clock time. This information is printed to a file

along with the command being processed or the button handler in use.

3.5 Testing

3.5.1 Testing Magic Functionality. If ObjectStore is to replace the existing data-

base management system of Magic, it must maintain complete functionality of the original

28



system. To exhaustively test the functionality of a system the size of Magic would require

an inordinate amount of time. Fortunately, since the purpose of this thesis is only to

demonstrate the feasibility of ObjectStore, such exhaustive testing is not necessary. In-

stead, a simple, sound test of the database functions along with limited testing of the other

Magic functions should be adequate.

Part of the limited documentation of Magic is a tutorial which walks the new user

through all of the basic commands that are available. This tutorial is the basis of the

functionality testing for Magic. Where database commands are used such as save, flush,

and load, an attempt is made to test all classes of input parameters (e.g. save is tested

with no parameters, with the same cell name as a parameter, and with a new cell name as

a parameter). Since few new functions have been added and most of the Magic modifica-

tions are simply conversions from C to ObjectStore DML, little should change in Magic's

functionality. Any errors introduced as a result of the changes should be significant enough

to be caught by the above tests. In addition, since performance testing concentrates on the

database (see the following section), these tests serve to further validate the functionality.

3.5.2 Performance Testing. Performance testing compares the differences in access

time between Magic implementation using ObjectStore and the original implementation

using flat Unix files. This testing must measure Magic performance during a typical user

session along with concentrated testing of the database functions of Magic. A typical user

session (as used at the Air Force Institute of Technology) does not require many database

accesses. This is likely due to the difficulty of accomplishing common database functions

(such as searching for an existing cell) and the experimental nature of educational research

which leads to circuits built entirely from scratch. Since a typical user session does not ad-

equately test the database capabilities, performance comparisons are also conducted using

the IlyperModel Benchmark (see Section 2.3.1) guidelines. The HyperModel Benchmark

lists six areas which are important for measuring database performance - lookup and

retrieval, traversal, insertion, sequential scan, closure operations, and opening and closing

of the database.

29



All performance testing is accomplished with existing Magic commands. As such,

some of the six areas above may be only partially tested. Use of existing commands is

necessary so ObjectStore performance can be directly compared to the existing flat file

structure. The ObjectStore database is loaded in advance with all Magic cells in a specific

search path, so that the search space is roughly equivalent with that of the Unix directories.

Performance testing is accomplished on two existing cells. On.- cell contains 87

subcells with eight levels of nesting and the other cell contains two subcells with one

level of nesting. The various Magic commands for measuring the benchmark criteria are

discussed below.

* Look up and retrieve an object from the database. The load celiname command

searches the database until it finds the specified cell and then displays it in the

selected window. If the cell has any subcells, these are not initially displayed.

* Traverse pointer hierarchy. The expand command loads and displays all of the sub-

cells in a selected area of the root cell. When the entire cell is selected, all of the

subcell pointers are dereferenced and the subcells displayed.

* Insert an item into the database. The getcell cellname command loads a subcell

from the database and creates a new instance of that cell in the root cell. The load

command without a specified cell creates a new cell definition in the database. With

the non-persistent version of the database, the new cell definition or instance is not

actually created until the cell is saved; therefore, the time to write modified cells to

disk must be included in the comparison with the ObjectStore version.

* Closure operations. In normal operation, the Magic design rule checker runs in the

background. To test closure, however, the design rule checker is turned off, .L subcell

is added on top of the existing cell, and the design rule checker is run on the entire

cell.

e Sequential Scan. Since no use is made of ObjectStore collections, this aspect of the

database benchmark is not tested.

30



* Database initialization. Since the existing Magic system has no database, this I -nch-

mark can not be directly compared; however, the tests are still run and compared

based on the overall time to initialize Magic.

3.6 Summary

The size and complexity of Magic presents a difficult system to understand and mod-

ifi. Since ObjectStore is written to take advantage of the object-oriented characteristics

of C+ +, Magic's imperfect object-oriented programming structures and its use of obscure

C programming routines increase the difficulty of converting it to ObjectStore. Since t..!
original Magic has no database management system whatsoever, performance testing is

complicated by the inability, in many cases, to directly compare the ObjectStore version of

Magic with the original Magic version. Many of these difficulties are overcome with careful

implementation of ObjectStore utilities and with selective testing using Magic commands

in a well prepared test environment.

31



IV. Results Analysis

4.1 Overview

The primary objective of this thesis is to show that an object-oriented database

can provide the performance and functionality necessary to support a computer-aided

design tool. By careful application of ObjectStore utilities, complete functionality of the

Mvagic VLSI circuit layout system has nearly been obtained. Thi, chapter compares the

relative performance of Magic as implemented with ObjectStore to the original flat file

data management system. The chapter also points out the difficulties encountered while

converting the complex C code of Magic to work with the complicated, object-oriented

data management facilities of Object',tore.

4.2 Performance Comparison of ObjectStore and Flat Data Files

The performance requirements of a complex engineering design system such as Magic

are immense. To satisfy these requirements, a database management system must perform

nearly as well or better than a flat file data management system. To compare the per-

formance of Magic using ObjectStore to Magic's performance using its original flat file

system, the performance tests described in Section 3.5.2 were accomplished using two

different Magic databases.

drfm This database consists of 110 objects (i.e., cell definitions) and 1861 different in-

stances (i.e., cell uses) of these objects. There are over 78,000 fundamental data

items (i.e., tihes) at the lowest level of the object hierarchy. This database was tested

using cell drfmchip with 87 subcells and eight levels of nesting. The Magic display

of this cell, with all subcells completely expanded, appears in Figure 7.

tutorial This database contains 70 objects and 103 different instances. There are nearly

9300 fundamental data items at the lowest level of the object hierarchy. Testing was

accomplished using cell tut4a which contains two subcells and one level of nesting.

Figure 8 shows the Magic display of the tiles and subcell structure of this cell.

32



S -A rA N.

____1_ WE-

.~AM

li

A 3

*':

Figure 7. Magic display of cell drfmchip

33



Figure 8. Magic display of cell tut4a

34



The results of the performance tests are shown in Tables 2 and 3. Raaw performance

test results are contained in Appendix A. The results shown in Tables 2 and 3 represent

averages of all valid results obtained for each command. For more accurate comparison

with ObjectStore, the resources necessary for writing all modified cells to disk are added

to the performance results for the insertion and closure tests.

For the drfmchip cell, instance insertion and closure are tested on a subcell nested

four levels deep in the hierarchy (bignandmux) and on a subcell nested eight levels deep

(mcelllO). There are 16 instances of the big.nandmux subcell and 6144 instances of the

mceillo subcell. Between these two levels of nesting, the time difference to accomplish

instance insertion and closure was considerable (See Table 4). The average of these two

different levels is used for comparison in Table 2. Instance insertion and closure are tested

on a subcell nested only one level deep in the tut4a cell. There are only eight instances of

this subcell.

Testing of the drfm database was accomplished with ObjectStore cache sizes of both

640 and 2048 sectors. The 640 sector cache worked more quickly for look up and retrieval,

traversal, initialization, and object insertion. These are the results shown in Table 2.

Similarly, the results for the 2048 sector cache are used for instance insertion and closure.

All ObjectStore results for the tutorial database were obtained with a cache size of 2048

sectors.

The results for the different cache sizes are summarized in Table 5. Instance and

closure results in this table are based on the subcell big.nandmux which is nested four

levels deep. Neither size of cache performs better for all test cases. Optimal cache size will

depend on which database utilities are more commonly used.

The commands used for performance testing fall into three different categories. Those

used for look up and retrieval and hierarchy travmrsal require reading from the database. In

the original version of Magic, Insert and closure commands are performed entirely within

memory. For this reason, the resources necessary to write to disk all cells modified by

these commands are added to the results in Tables 2 and 3. Initialization is a combination

of reading and writing from the database and initializing memory. In general, Object-

35



Criteria Tested Resource Data Management System Percent
Command Used Measured Flat File ObjectStore Change

Look up/retrieve CPU time (seconds) 0.06 0.05 -17
load drfmchip Elapsed time (seconds) 0.12 0.33 +175

Page Faults with I/O 2 0 -co
Page Faults without I/O 4 36 +800
Disk Blocks In 1 0 -00
Disk Blocks Out 0 0 0

Hierarchy Traversal CPU time (seconds) 6.62 1.54 -76
expand Elapsed time (seconds) 9.32 4.37 -53

Page Faults with I/O 89 0 -00
Page Faults without I/O 733 380 -48
Disk Blocks In 91 0 -00
Disk Blocks Out 3 0 -00

Insert (object) CPU time (seconds) 0.03 0.02 -50
load test Elapsed time (seconds) 0.124 0.040 -68

Page Faults with I/O 0 0 0
Page Faults without I/O 13 23 +77
Disk Blocks In 0 0 0
Disk Blocks Out 6 0 -00

Insert (instance) CPU time (seconds) 1.36 0.22 -84
getcell test Elapsed time (seconds) 2.63 0.24 -91

Page Faults with I/O 1 0 -co
Page Faults without I/O 112 15 -87
Disk Blocks In 1 0 -00
Disk Blocks Out 70 0 -co

Closure CPU time (seconds) 52.1.9 193.42 +271
drc catchup Elapsed time (seconds) 53.98 197.66 +266

Page Faults with I/O 7 2 -71
Page Faults without I/O 136 151 +11
Disk Blocks In 1 0 -00
Disk Blocks Out 70 0 -00

Initialization CPU time (seconds) 5.74 5.86 +2
Elapsed time (seconds) 10.71 15.21 +42
Page Faults with I/O 82 28 -66
Page Faults without I/O 203 493 +143
Disk Blocks In 13 8 -38
Disk Blocks Out 1 2 +100

Table 2. Benchmark performance results for drfm database

36



Criteria Tested Resource Data Management System Percent

Command Used Measured Flat File ObjectStore Change

Look up and retrieve CPU time (seconds) 0.01 0.03 +200
load tut4a Elapsed time (seconds) 0.047 0.037 -21

Page Faults with I/O 1 0 -00
Page Faults without I/O 6 30 +400
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Hierarchy Traversal CPU time (seconds) 0.04 0.02 -50
expand Elapsed time (seconds) 0.0788 0.0252 -68

Page Faults with I/O 1 0 -co
Page Faults without I/O 3 6 +100
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Insert (object) CPU time (seconds) 0.020 0.017 -15
load test Elapsed time (seconds) 0.158 0.026 -84

Page Faults with I/O 0 0 0
Page Faults without I/O 13 16 +23
Disk Blocks In 0 0 0
Disk Blocks Out 7 0 -00

Insert (instance) CPU time (seconds) 0.060 0.013 -78
getcell test Elapsed time (seconds) 0.532 0.029 -95

Page Faults with I/O 0 0 0
Page Faults without I/O 14 1 -93
Disk Blocks In 0 0 0
Disk Blocks Out 22 0 -00

Closure CPU time (seconds) 0.58 2.00 +245
drc catchup Elapsed time (seconds) 1.05 2.03 +93

Page Faults with I/O 0 0 0
Page Faults without I/O 24 6 -75
Disk Blocks In 0 0 0
Disk Blocks Out 22 0 0

Initialization CPU time (seconds) 5.66 5.82 +3
Elapsed time (seconds) 8.53 9.91 +16
Page Faults with I/O 14 4 -71
Page Faults without I/O 299 514 +72
Disk Blocks In 2 4 +100
Disk Blocks Out 1 1 0

Table 3. Benchmark performance results for tutorial database

37



Criteria Tested Resource Level of Nesting Percent
Command Used Measured [ 8 (mcelliO) ] 4 ( big..tandraux) Change

Insert (instance) CPU time (seconds) 0.41 0.022 -95
getcell test Elapsed time (seconds) 0.45 0.027 -94

Page Faults with I/O 1 0 -0o
Page Faults without I/O 29 1 -97

Closure CPU time (seconds) 368.61 18.23 -95
drc catchup Elapsed time (seconds) 376.75 18.56 -95

Page Faults with I/O 3 2 -33
Page Faults without I/O 251 51 -80

Table 4. ObjectStore performance at two different levels of subcell nesting

Store had better response time than Magic's original data management system for those

commands with frequent database access relative to total processing time.

ObjectStore's performance varies most significantly with the closure command (i.e.,

drc catchup). To understand why, more insight into the design rule checker (drc) is required.

The design review checker applies rules from a file of over 500 lines to each tile in the

cell. Hierarchical designs are checked by ensuring the cell alone is consistent, and that

the combination of the cell and all of its subcells is consistent (14). This may require

traversing the cell hierarchy a number of times to complete the design rule checking; thus,

small discrepancies in response time are multiplied into large differences such as those

shown in Tables 2 and 3.

The design rule checker usually runs in the background because of the large amount of

processing it requires (14). It limits its checks to those cells which are currently in memory;

other cells are checked the next time they are read into memory. This allows incremental

application of design rules to the cell and eliminates the need to process the entire cell at

once. Since the ObjectStore version of Magic extends memory to include database items

which are on the disk, it always appears as if the entire database is in memory; thus, the

design rule checker checks all cells in the database. Because of these variations in virtual

memory, valid comparisons can only be made with the entire cell resident in main memory.

The Obje, tStore database required considerably more disk space than Unix flat files

(see Table 6). Both ObjectStore and Magic add overhead to the ObjectStore database

38



Criteria Tested Resource Cache Size (sectors) Percent
Command Used Measured 640 2048 Change

Look up/retrieve CPU time (seconds) 0.05 0.07 +40
load drfmchip Elapsed time (seconds) 0.33 0.35 +6

Page Faults with I/O 0 0 0
Page Faults without I/O 36 43 +19
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Hierarchy Traversal CPU time (seconds) 1.54 1.61 +4
expand Elapsed time (seconds) 4.37 5.91 +35

Page Faults with I/O 0 0 0
Page Faults without I/O 380 467 +23
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Insert (object) CPU time (seconds) 0.022 0.021 -4
load test Elapsed time (seconds) 0.040 0.053 +32

Page Faults with I/O 0 0 0
Page Faults without I/O 23 20 -13
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Insert (instance) CPU time (seconds) 0.05 0.02 -60
getcell test Elapsed time (seconds) 0.077 0.027 -65

Page Faults with I/0 1 0 -co
Page Faults without I/O 10 1 -90
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Closure CPU time (seconds) 23.48 18.23 -22
drc catchup Elapsed time (seconds) 23.87 18.56 -22

Page Faults with I/O 2 2 0
Page Faults without I/O 20 51 +155
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0

Initialization CPU time (seconds) 5.86 6.02 +3
Elapsed time (seconds) 15.21 15.47 +2
Page Faults with I/O 28 54 +100
Page Faults without I/O 493 481 -2
Disk Blocks In 8 13 +62

J Disk Blocks Out 1 2 +100

_ Disk Usage (kbytes) 1 724] 4882 +5741

Table 5. ObjectStore performance comparison with two different cache sizes

39



Size in Kbytes P:] ercent

Data Item Flat File I ObjectStore Change
tutorial database 58 713 +1129

drfmchip database 724 4882 +574

initialized database (empty) 0 147 +7
test object & instance 0.081 2.3 +2740

Table 6. Comparison of ObjectStore and Unix flat file disk usage

which is not saved in the Unix file representation. For Magic this overhead is approximately

50 kilobytes. The ObjectStore overhead varies with the total size of the database. With no

data other than the Magic and ObjectStore overhead in the database, the total database

size is nearly 150 kilobytes. In addition, ObjectStore holds the entire data structure for

each cell in memory. This includes pointers and empty hash table buckets. The Unix

files only contain the contents of the cell data structure. Because of the large amount of

overhe!ad associated with ObjectStore, the difference is disk usage is more significant for

smaller data items.

4.3 Conversion to ObjectStore

One of the objectives of this thesis was to show that conversion of a design system to

an object-oriented database is a cost-effective venture. If this new technology is to replace

existing design systems, system managers must be convinced that the benefits of using

a database will outweigh the costs of conversion. While performance is one of the key

issues in this decision, there are a number of benefits (as discussed in Chapter 1) and costs

associated with converting to a database management system.

4.3.1 Problems Encountered. Due to the size and complexity of Magic, and the

intricacies of ObjectStore, a number cf difficulties were encountered during the conversion

process. These difficulties were further aggravated by the immaturity of the ObjectStore

database system and the lack of documentation for Magic.

Implementation of ObjectStore's versioning capability presented the only problem

which could not be resolved. The configuration: :of(object) command is designed to

40



return a pointer to the configuration of the object specified. In a number of places this

pointer is then used to allocate a subobject in the same configuration as the object. The

sequence of command is as follows:

cellConfig = configuration: :of(cellDef);
cellUse = new(magicdbl, cellConfig) CellUse;

ObjectStore fails when attempting to allocate the subobject. No fix is currently available

for this problem, so versioning does not work with the current ObjectStore implementation

of Magic. This prevents a circuit designer from backing out of cell modifications - once

a cell is changt L, the change is reflected permanently in the ObjectStore database.

Another problem area stems from the incompatibility of C and C++. In theory, C++

is designed to be a superset of C (18). While this may be true in a C program that is very

well designed and coded, in reality C allows many structures that are not compatible with

C++. While Magic is a rather well designed system, its size and the complex programming

structures which it uses to maximize efficiency have led to code which is unstructured and

difficult to trace. Some common problems include functions used without being previously

declared, data types used in header files that are declared in a separately included header

file, and functions with different types of parameters being passed as parameters to another

function. Since C++ has much stricter type checking, these problems had to be resolved if

the program included any ObjectStore DML commands which required the C++ compiler.

While not directly related to compatibility between C and C++, the ability to cast

types in C presents significant problems. Magic uses this capability extensively. In one

particular instance, tlibody is dcclared as a char; however, to handle subcells within a

plane, a list of pointers to CellUse is cast to this variable. Initially, Magic sets the ti-body

field to a char. If ObjectStore encounters a char value when it is expecting a persistent

pointer, it is unable to dereference the pointer and the program aborts. Such errors are

very difficult to trace due to the use of type casting.

Many difficulties were encountered due to peculiarities of the ObjectStore DML.

Those which were hardest to resolve are listed below.

41



" Inconsistency of schemas. If the database schema is modified, the old database is no

longer valid for that application (16). A procedure must be made for converting the

old data to match the new schema, or the data is lost.

* Incompatibility of persistent types with C. Persistent types have an extra level of

indirection which must be accounted for if using them in a C program (16). Ob-

jectStore also uses a persistent dereferencing type which is not compatible with the

C compiler. This requires all C programs to access persistent data types through a

C++ interface.

" Databases and persistent database entry points must be declared at a global level.

Since Magic is broken into a number of subdirectories, it is unclear at exactly what

level these declarations should occur. This was resolved by declaring them at file

level in any directory and including an extern declaration in a header file.

" When using versioning, the effects of configuration: :forget are unclear. This

command should remove the specified version from the current workspace (12); how-

ever, this does not happen when the versioned object has just been created and exists

in no other workspace. The configuration: :destroy.version command was used

instead. To be able to destroy a version, however, the configuration must have been

previously frozen in some workspace. This is accomplished by first checking any

new configuration into the global workspace before checking it back out to make

modifications.

" A discriminant function is required when using a union (12). No explanation is

given on what this function should do and when it should be called. To eliminate

the associated complexities, the union was removed as it was no longer necessary for

the updated Magic program.

" When more data is read into memory than ObjectStore can manage, it attempts to

evict a page from memory causing an exception which crashes Magic. To overcome

this problem when testing drfmchip, the cache size had to be manually increased to

2048 sectors.

42



Most of the facilities discussed above are included in the ObjectStore documentation,

but inadequate explanation of their purpose and implementation is given. The documen-

tation often tells how to implement an ObjectStore function with no explanation as to why

it is done that way. As a consequence, when something must be done different for a specific

application, it is difficult to make the adaptation. An example is the Makefile structure

for Magic. Magic has a separate Makefile for each subdirectory. This Makefile compiles

each program in the subdirectory and links the object files into a composite object file for

the entire subdirectory. Each subdirectory object file is then linked together for the Magic

executable. The description of ObjectStore Makefiles assumes all object and source code

is in one directory (11). The solution was simple - to only use the ObjectStore linker

for the executable and not for each individual subdirectory - but many hours of analysis,

trial and error, and consultation with the ObjectStore programmers were required before

the problem was resolved.

Another significant difficulty with the documentation occurs when using the Object-

Store DML. Even though this is the primary language for ObjectStore, the ObjectStore

User Guide deals primarily with the ObjectStore C++ interface library. In many cases

the DML replaces multiple library calls, thus simplifying the programming and subsequent

maintenance. Only brief descriptions of these DML commands are given, however, with

few examples and little correlation to the functions performed by the library interface.

4.3.2 Effort Required. This thesis implements a minimal database version of Magic.

Changes were made to replace the original flat file structure with an ObjectStore database

while maintaining the same functionality. No attempt was made to take full advantage of

ObjectStore's other features. The time spent on this conversion is broken down in Table 7.

The estimates in this chart are based on the perceived difficulty of each process and the

total time available for the conversion.

As reflected in this table, the conversion to ObjectStore took longer than expected.

Since C constructs are supposed to be compatible with C++, the only code conversions

expected were those necessary for the ObjectStore DML. The many other conversions

which were actually required had a significant impact on the time required to make Magic

43



__Estimated Actual

Magic design recovery 10 11
ObjectStore Familiarity 10 11
C++ Conversion 0 13
ObjectStore Persistence 15 17
ObjectStore Versions 10 20
Total 45 172

Table 7. Man days spent converting Magic to work with ObjectStore

work with ObjectStore and its C++ compiler. The other major deviation in time is

that required for implementing ObjectStore versions. This is an extremely challenging

ObjectStore utility and the documentation is somewhat limited. In some cases, such as

configuration: :forget, the versioning commands do not work exactly as the documen-

tation describes them. In other instances, for example, when Magic creates an instance of

a cell for a window or initializes a plane for a tool like the circuit router, it was difficult to

determine what version the new plane or cell instance should be in.

4.4 Summary

Performance tests were accomplished for six benchmark areas using the Objectstore

version and the original version of Magic. While problems were encountered during the

implementation of Magic with ObjectStore, the implementation was complete enough to

compare performance of the two data management systems. The problems encountered

range from failures of ObjectStore procedures to difficulties in making C code compatible

with the ObjectStore DML compiler. Some problems were further complicated by inade-

quacies in ObjectStore documentation. These difficulties are reflected in the effort which

was required to convert Magic to use the ObjectStore database management system.

44



V. Conclusions and Recommendations

5.1 Overview

This chapter summarizes the activities necessary for implementing and testing Magic

with the ObjectStore database management system. The results presented in Chapter 4

are analyzed and conclusions reached regarding how well the objectives of Chapter 1 have

been satisfied. Finally, recommendations for further research are presented which may help

answer some of the questions raised by this thesis.

5.2 Summary of Research

This thesis directly converted the Magic layout design system to take advantage of

the database facilities of ObjectStore. A design recovery of Magic revealed the database

manager module to be the critical component of this conversion. The data structure used

by the database manager consists of a cell definition for each VLSI circuit and a lst of cell

uses for each particular instance of the cell definition.

Conversion of Magic required the cell definition and cell use data structures to be

persistently allocated using the persistent new command of ObjectStore. File input and

output was eliminated since the data structures are no longer destroyed when Magic is

shutdown. Some Magic commands were modified slightly to account for invalid data re-

maining in the database along with data which the designer intends to keep.

To compare the performance of the original Magic to the version modified to work

with ObjectStore, timing routines were instrumented in the code to measure the time

required to complete a Magic command. Routines were also added to measure disk a-cess.

Performance testing was accomplished using Magic commands which require extensive

database access. Emphasis in performance testing was placed on those database attributes

specified in the IlyperModel Benchmark.

5.3 Conclusions

The objectives of this thesis require that the ObjectStore version of Magic provide

the full functionality of the original version. Response time must not increase by more

,15



than ten percent oxer the original version. This thesis also attempts to demonstrate that

conversion of Magic from its flat file data management systcm to ObjectStore is a cost

effective undertaking. The results of Chapter 4 are analyzed in the follo'. - subsections

to determine whether these thesis objectives were met.

5.3.1 Database Functionality. As described in its documentation, ObjectStore pro-

vides support for complete functionality of Magic in a manner similar to the original ver-

sion. While some commands may perform in a slightly different manner, the same functions

are supported. Unfortunately, however, ObjectStore does not work entirely as described

in its documentation. The primary difference is implementation of ObjectStore's version-

ing facilities. These are necessary to allow Magic tz) roll back to a previously baseined

design. The versioning facilities do not work correctly with ObjectStore version 1.1, so the

implementation of Magic for this thesis does not support design roll back.

5.3.2 Database Performance. The results presented in Chapter 4 show Magic to

meet performance goals for only three of the six areas of performance benchmark testing:

hierarchy traversal and object and instance insertion. Because of this, one may tend to

conclude that ObjectStore's performance is inadequate for supporting complex engineering

design systems such as Magic. R.G.G. Cattel suggests, however, that benchmark perfor-

mance tests may not be an accurate measure of performance; rather "The most accurate

measure of performance for engineering applications would be to run an actual application

.... (2:364)"

When actually using Magic, the difference in performance was not readily apparent.

For look up and retrieval, the difference in response time, while representing an increase of

nearly 200 percent, was still only measured in fractions of a second - barely perceptible to

a human user. Database initialization, while taking 42 percent more time with ObjectStore,

is only performed once per user session. Five seconds in a session that may be hours long

does not seriously detract from overall performance. Closure operations, as tested with the

drc catchup command, took uorsiderably longer with ObjectStore. Even with the original

version of Magic, however, this command took a long time to accomplish. It is for this

reason that the designers of Magic expect users to generally run the design rule checker

46



in the background. This background checking can be turned off when a large number of

changes are made co a circuit design. When the changes are completed, drc catchup will

run the design rule checker on all changes made during the session. Again, this represents

a few minutes of trade-off in performance during what typically is an hours long session.

ObjectStore required a considerable amount of space to store the Magic databases.

In the original environment which the performance tests were accomplished, this amount

of space had a significant impact. With the current implementation of Magic using a single

t:ansaction, no segment of the database could be found to remove from memory once the

entire circuit was swapped into memory. The single transaction implementation coupled

with the large database size led to memory quickly being used up and the Magic sys-

tem failing. These problems do not necessary reflect poorly on object-oriented databases,

however, since proper transaction implementation would easily overcome the problems.

In addition, newer releases of ObjectStore are projected to better handle such i lemory

swapping problems (16).

When considering the performance of the ObjectStore version of Magic, one must

realize that Magic was not designed using object-oriented programming techniques. Any

optimization built into the Magic code is designed to improve efficiency of the Unix flat

file storage system, not a database management system. The fact that the original Magic

design does not take advantage of these fundamental concepts of the ObjectStore database

management system may account for the failure f Magic to perform as well with Object-

Store as it does with its current Unix flat file management system. That the ObjectStore

version of Magic performs best for hierarchy traversal demonstrates what Object Design

considers to be the primary benefit of ObjectStore's architecture (9:61).

Overall, the performance results obtained from implementing Magic with ObjectStore

are inconclusive. Benchmark tests indicate that ObjectStore performance falls within the

ten percent increase criteria for only three of six areas. Actual usage of Magic, however,

showed that the areas not meeting the performance criteria are unlikely to noticeably

impact the overall performance of Magic. Modification of Magic's design to better take

advantage of ObjectStore's database features would likely improve performance. Similarly,

memory limitations of the existing implementation provided for a very unstable environ-

47



ment; however, proper implementation of transactions along with projected upgrades to

the ObjectStore database system would likely eliminate this problem.

5.3.3 Conversion Cost Effectiveness. One of the primary costs of any software sys-

tem is that necessary for software maintenance. These costs can be minimized if software

changes affect only small, localized segments of code and if maintainers can easily un-

derstand the organization and functionality of existing code. Object-oriented computing

attempts to minimize the impact of changes through data encapsulation, in which the

underlying data is accessible only through a well-defined interface (19). Increased under-

standing is attained through abstraction, a concept in which the programmer's model of

an object more closely approximates the user's conceptual model of the object (4). A data-

base management system also supports data encapsulation and abstraction by providing

mechanisms for defining storage structures and manipulating information (8).

ObjectStore supports both object-oriented computing and database management.

With its persistent data structures and procedures for managing data, all input and output

procedures can be eliminated from the program. This eliminates the complexity involved

with transforming data fr, n its flat file representation to the appropriate data structure

in memory. Unfortunately, the implementation of Magic for this thesis does not take

full advantage of ObjectStore's object-oriented computing facilities. Because the interface

to the database is not well-defined, a change in the database structure may affect many

segments of the system. By not converting Magic's existing C code to C++ which is used

by ObjectStore, additional complexity was added since both a C and a C++ interface

must be specified for each module.

ObjectStore provides the capability to greatly enhance the maintainability of Magic.

Unfortunately, by failure to take full advantage of ObjectStore's object-oriented facilities,

and through offsetting the maintenance advantages of a database management system with

an extra interface for C++. the overall maintainability of Magic remains about the same.

No maintenance cost savings are realized with the version of Magic implemented for this

thesis.

48



On the other hand, the costs associated with converting to ObjectStore were rela-

tively high. In four months of intense study and programming with ObjectStore, it was

not possible to learn and understand every aspect of ObjectStore or to even completely

understand any single aspect. No programming at all was accomplished using Object-

Store's collection and relation facilities. Versioning was not completely implemented due

to faults in the ObjectStore system. In some instances, the documentation inadequately

or improperly described ObjectStore functionality, thus requiring technical support from

the designers of ObjectStore to resolve programming issues.

Another significant cost associated with conversion to ObjectStore was modifying

C programs for compatibility with C++. This task could have been avoided by using

ObjectStore's C library interface; however, this would increase the effort required to take

advantage of the object-oriented programming facilities of C++ at a later time.

The ObjectStore implementation of Magic for this thesis was not cost effective. The

costs associated with learning the ObjectStore system and making C programs compatible

with C++ were not offset by any significant improvement in maintainability. A complete

redesign using object-oriented techniques which take advantage of ObjectStore's data defi-

nition and manipulation language (DML) would significantly increase the understandabil-

ity of the Magic code and likely reduce future maintenance costs. Such a redesign would

also likely improve Magic's performance. The costs of a complete redesign would be high,

however, suggesting that ObjectStore may be better suited for developing new systems

or converting systems that are already object-oriented rather than converting a complex

system design such as Magic's.

5.4 Recommendations for Further Research

This thesis did not take advantage of the object-oriented facilities of the ObjectStore

DML, nor did it take full advantage of all the features of ObjectStore. While one of

the goals of this thesis was to ,how a reduction in future maintenance costs, little was

done toward attaining this goal. Object-oriented programming was expected to reduce

maintenance costs; however, no such modifications were made to the Magic code. If the

database manager r-odule of Magic were truly object-oriented, the changes to implement

49



Magic with ObjectStore would have been limited to this module. To show that this is

the case, future research should be directed toward implementing the database manager

module of Magic using good object-oriented C++ features. Creating a C++ class for

the cell definition and each of its subordinate objects would significantly increase the

understandability and maintainability of Magic's database manager.

As currently implemented with a single ObjectStore transaction, the ObjectStore

version of Magic has even more severe memory limitations than the original version of

Magic. The drfmchip circuit design is the largest circuit which can be loaded into memory.

If transactions were limited to the smallest set of instructions necessary for maintaining

database consistency, memory would only be lijiited by the amount of available disk space.

Minimizing piocessing within a transaction would also improve the ability for concurrent

access of the database by more than one user. Smaller transactions lock each database

segment for less time, thereby giving other users quicker access to the same segment.

Two major features of ObjectStore were not used in this implementation of Magic:

relationships and collections. Both have the potential to reduce the complexity of the

Magic code. The cell definition structure includes relations to hash tables, cell labels, tiles,

planes, and cell uses. Use of ObjectStore's relationship and inverse relationship features

along with ObjectStore collections would potentially eliminate the complex list structures

currently used for labels and cell uses. ObjectStore's facilities for traversing lists could be

used instead, thus reducing the amount and complexity of Magic code. Magic's collection

facilities could also directly replace the symbol tables used for cell definitions and cell

configurations.

The versioning facility of ObjectStore was not completely implemented due to dis-

crepancies with the ObjectStore system. When these discrepancies are fixed, versioning

implementation should be completed to allow full functionality of the Magic system. In

addition, versioning provides the capability for cooperative work on a circuit design in

which two designers may work on the same circuit at the same time. If this is to be done,

however, Magic must ensure that the two users do not make conflicting changes unless

facilities are provided for managing these changes.

50



5.5 Summary

Overall performance of Magic as implemented for this thesis does not justify con-

version of existing applications to use object-oriented databases. Many questions are left

unanswered, however, due to the difficulties encountered while implementing Magic with

ObjectStore. To answer these questions and take better advantage of ObjectStore's facili-

ties, a number of proposals for additional research are presented. It is quite possible that

complete implementation of these proposals would lead to a Magic system with signifi-

cantly improved maintainability and performance. Object-oriented database management

systems, while not fully proved in this thesis, still present the potential for greatly simplify-

ing the development and maintenance of complex, data intensive, engineering applications.

51



Appendix A. Raw Performance Test Results

Original version of Magic using drfmchip

CPU I Elapsed Page Faults Disk Blocks
Command Time Time with I/O ] w/o I/O 1 JIn Out
load drfmchip 0.06 0.180 4 7 2 0

0.06 0.085 1 0 1 0
0.06 0.078 1 1 1 1
0.06 0.170 5 2 0 0
0.08 0.120 2 2 1 0
0.06 0.068 0 10 0 0

expand 6.71 10.18 124 833 115 3
6.37 7.84 19 510 20 4
6.76 9.83 121 745 123 3
6.80 10.71 132 797 139 4
6.67 9.88 122 850 129 3
6.44 7.49 17 661 19 3

load test 0.01 0.012 0 16 0 0
0.01 0.013 0 17 0 0
0.01 0.012 0 16 0 0
0.01 0.012 0 18 0 0
0.01 0.012 0 16 0 0
0.01 0.016 0 23 0 0

write test 0.01 0.147 0 17 1 7
0.00 0.123 0 12 0 7
0.04 0.093 0 12 0 6
0.04 0.131 0 12 0 7
0.02 0.091 0 12 0 6
0.00 0.080 0 12 0 6

initialize 5.74 11.87 111 159 23 1
5.58 10.90 85 202 5 2
5.55 10.40 87 200 9 2
5.58 11.16 95 196 16 1
6.12 11.74 107 219 19 1
5.45 8.18 7 245 8 1

52



Original version of Magic using drfmchip
getcell test nested 8 deep in subcell mcelllO

PU CPU Elapsed Page Faults Disk Blocks
Command Time Time I with I/O w/o I/O In Out

writeall force 2.54 4.81 9 618 8 103
1.61 3.28 2 88 0 90
1.58 3.12 0 88 0 99
2.38 3.93 0 88 3 94
2.42 3.96 0 88 0 95
1.61 3.26 0 89 5 90

getcell test 0.03 0.076 3 1 0 0
0.02 0.013 0 0 0 0
0.01 0.013 0 0 0 0
0.02 0.085 2 0 0 0
0.01 0.012 0 0 0 0
0.01 0.010 0 1 0 0

drc catchup 96.24 97.59 26 93 0 0
94.72 96.26 34 8 0 0
94.73 95.70 13 13 0 0
96.44 97.14 2 173 0 0
94.88 95.55 0 2 0 0
95.97 96.77 1 0 0 0

53



Original version of Magic using drfmchip
getcell test nested 4 deep in subcell big-nandmux

SCPU I Elapsed Page Faults I Disk Blocks
Command Time J Time with I/O w/o I/O 1InT Out

writeall force 0.70 1.47 0 48 0 45
0.72 1.50 0 48 0 48
0.68 1.48 0 48 0 45
0.68 1.52 0 48 0 43
0.66 1.51 0 48 0 50
0.69 1.48 0 48 0 43

getcell test 0.01 0.0110 0 1 0 0
0.00 0.0085 0 0 0 0
0.00 0.0073 0 0 0 0
0.00 0.0075 0 0 0 0
0.00 0.0090 0 0 0 0

drc catchup 6.15 6.26 0 0 0 0
6.20 6.23 0 0 0 0
6.17 6.20 0 0 0 0
6.18 6.22 0 0 0 0
6.18 6.32 0 0 0 0
6.22 6.27 0 0 0 0

54



ObjectStore (Cache Size 2048 sectors) version of Magic using drfmchip

CPU Elapsed Page Faults Disk Blocks
Command Time Time with I/O w/o I/O In Out
load drfmchip 0.07 0.34 0 40 0 0

0.04 0.36 0 39 0 0
0.08 0.38 0 41 0 0
0.09 0.41 0 45 0 0
0.06 0.25 0 46 0 0
0.07 0.38 0 45 0 0

expand 0.96 4.35 0 341 0 0
1.09 5.52 0 363 0 0
1.92 7.96 2 525 0 0
1.95 6.47 1 525 0 0
1.86 5.38 0 525 0 0
1.86 5.78 0 525 0 0

load test 0.03 0.068 0 20 0 0
0.02 0.107 0 21 0 0
0.02 0.075 0 20 0 0
0.02 0.022 0 20 0 0
0.02 0.023 0 20 0 0
0.02 0.025 0 20 0 0

initialize 5.69 12.77 36 475 9 1
6.02 14.61 69 467 19 2
5.92 16.23 94 45°  17 2
5.82 16.55 40 485 14 1
6.00 18.23 36 515 9 2
6.70 14.29 51 486 13 2

55



ObjectStore version of Magic using drfmchip
getcell test nested 8 deep in subcell mcell0

CPU Elapsed Page Faults Disk Blocks

Command Time -Time with a/1 w/ 0O In BlOut

getcell test 0.44 0.54 2 15 0 0
0.37 0.44 2 0 0 0
0.49 0.49 0 160 0 0
0.43 0.44 0 0 0 0
0.38 0.38 0 1 0 0
0.37 0.42 0 0 1 1

drc catchup 403.77 434.24 16 49 0 0
366.54 369.31 0 713 0 0
370.38 373.34 0 728 0 0
360.74 363.55 0 14 0 0
361.15 368.24 0 2 0 0
349.10 351.85 0 1 0 0

56



ObjectStore version of Magic using drfmchip
getcell test nested 4 deep in subcell big.nandmux

CPU Elapsed Page Faults Disk Blocks
Command Time Time with I/O [ W/o I/O In Out

getcell test 0.03 0.057 0 4 0 0
0.02 0.024 0 0 0 0
0.02 0.035 0 0 0 0
0.02 0.015 0 0 0 0
0.02 0.015 0 0 0 0
0.02 0.015 0 0 0 0

drc catchup 18.43 19.58 11 307 0 0
17.73 17.84 0 0 0 0
18.34 18.45 0 2 0 0
17.83 17.93 0 0 0 0
18.53 18.72 0 0 0 0
18.55 18.87 0 0 0 0

57



ObjectStore (Cache Size 640 sectors) version of Magic using drfmchip
getcell test nested 4 deep in subcell big-nandmux

I Cmmad DCPU_ Elapsed Page Faults Disk Bok
Command Time Time with I/O [ w/o I/O In Out

load drfmchip 0.05 0.31 0 40 0 0
0.03 0.38 0 51 0 0
0.08 0.32 0 31 0 0
0.04 0.29 0 29 0 0
0.04 0.21 0 33 0 0
0.04 0.48 0 33 0 0

expand 0.99 4.55 1 358 0 0
1.06 1.06 0 0 0 0
2.31 5.39 0 529 0 0
2.15 5.79 0 528 0 0
1.82 4.87 2 521 0 0
0.94 4.59 0 345 0 0

load test 0.03 0.045 1 23 0 0
0.02 0.050 0 23 0 0
0.02 0.083 0 25 0 0
0.02 0.023 0 23 0 0
0.02 0.021 0 22 0 0
0.02 0.021 0 22 0 0

initialize 5.81 13.83 5 527 4 1
6.00 10.53 6 493 6 1
6.01 15.19 81 434 11 2
5.87 12.54 26 520 10 2
5.72 21.45 3 491 4 1
5.74 17.75 47 494 13 2

getcel test 0.09 0.400 4 31 0 0
0.03 0.031 0 0 0 0
0.03 0.030 0 0 0 0

drc catchup 23.97 24.86 13 118 0 0
23.72 23.79 0 0 0 0
23.34 23.58 0 0 0 0
23.20 23.53 0 2 0 0
23.41 23.80 0 1 0 0
23.34 23.67 0 0 0 0

58



Original version of Magic using tut4a

11 CPU D- lapsed [Page aults Disk Blocks
Command Time Time with I/0 w/o I/0 In Out

load tutta 0.00 0.210 4 0 1 0
0.01 0.013 0 7 0 0
0.01 0.013 0 7 0 0
0.02 0.018 0 8 0 0
0.01 0.013 0 7 0 0
0.01 0.013 0 7 0 0

expand 0.05 0.190 5 0 2 0
0.04 0.042 0 4 0 0
0.03 V.034 0 2 0 0
0.04 0.041 0 4 0 0
0.06 0.100 0 4 0 0
0.03 0.066 0 4 0 0

load test 0.01 0.0088 0 6 0 0
0.01 0.0085 0 6 0 0
0.01 0.0077 0 7 0 0
0.00 0.0074 0 7 0 0
0.00 0.0076 0 7 0 0
0.01 0.0530 0 7 0 0

write test 0.00 0.149 0 17 1 7
0.02 0.160 0 12 0 7
0.01 0.157 0 12 0 7
0.02 0.137 0 12 0 6
0.01 0.128 0 12 0 6
0.02 0.127 0 12 0 7

initialize 5.47 9.34 76 207 1 1
5.47 8.10 4 314 J. 2
5.78 8.14 0 319 0 2
5.94 8.52 0 319 0 0
5.80 8.27 4 314 4 1
5.50 8.85 0 319 0 1 1

59



Original version of Magic using tut4a

CPUd Elapsed} Page Faults Disk BlocksCommand Time L Time vith I/O [ w/o I/O In I Out

writeall force 0.07 0.553 1 26 0 23
0.05 0.498 0 24 0 21
0.05 0.479 0 24 0 21
0.04 0.533 0 24 0 23
0.10 0.507 0 24 0 21
0.04 0.554 0 24 0 21

getcell test 0.00 0.0370 1 0 0 0
0.00 0.0061 0 0 0 00.01 0.0065 0 0 0 0
0.00 0.0064 0 0 0 0
0.00 0.0066 0 0 0 0
0.00 0.0061 0 0 0 0

drc catchup 0.52 0.55 0 0 0 0
0.55 0.56 0 0 0 0
0.47 0.48 0 0 0 0
0.55 0.55 0 0 0 0
0.48 0.48 0 0 0 0
0.55 0.56 0 0 0 0

60



ObjectStore (Cache Size 2048 sectors) version of Magic using tut4a

IfCUjElapsed [ Page Fults 1-- Disk Blocks

Command Time Time with 1/0 w/o I/O 1InI Out
load tut4a 0.03 0.032 0 17 0 0

0.02 0.036 0 22 0 0
0.03 0.030 0 28 0 0
0.03 0.034 0 32 0 0
0.04 0.050 0 44 0 0
0.03 0.038 0 39 0 0

expand 0.02 0.019 0 4 0 0
0.02 0.021 0 6 0 0
0.02 0.027 0 6 0 0
0.02 0.028 0 7 0 0
0.02 0.031 0 6 0 0

load test 0.01 0.015 0 14 0 0
0.03 0.031 0 24 0 0
0.01 0.015 0 13 0 0
0.03 0.065 0 17 1 2
0.01 0.016 0 14 0 0
0.01 0.016 0 14 0 0

getcell test 0.03 0.099 2 4 0 0
0.01 0.015 0 0 0 0
0.01 0.015 0 0 0 0
0.01 0.013 0 0 0 0
0.01 0.013 0 0 0 0
0.01 0.019 0 0 0 0

drc catchup 2.18 2.25 1 34 0 2
1.83 1.86 0 0 0 0
2.14 2.16 0 0 0 1
1.87 1.89 0 0 0 0
2.12 2.13 0 1 0 0
1.88 1.89 0 0 0 0

initialize 5.64 9.71 4 507 6 3
5.82 10.38 6 529 5 2
5.73 9.99 4 510 4 1
6.27 9.68 4 513 4 1
5.74 10.00 5 512 4 1
5.74 9.73 4 517 4 1

61



Bibliography

1. Berre, Arne J. and T. Lougenia Anderson. "The HyperModel Benchmark for Eval-
uating Object-Oriented Databases." In Object-Oriented Databases with Applications
to CASE, Networks, and VLSI CAD, chapter 5, pages 75-91, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1991.

2. Cattel, R.G.G. "Object-Oriented DBMS Performance Measurement." In Proceedings
of the 2nd Workshop on OODBS, pages 364-367, 1988.

3. Gupta, Rajiv and others. "An Object-Oriented VLSI CAD Framework," Computer,
22:28-37 (May 1989).

4. Heiler, Sandra and others. "An Object-Oriented Approach to Data Management:
Why Design Databases Need It." In 24th Design Automation Conference Proceedings,
pages 335-340, 1987.

5. Jacobs, Captain Timothy M. OSmagic Programmers' Manual. Air Force Institute of
Technology, December 1991.

6. Jhingran, Anant and Michael Stonebraker. "Alternatives in Complex Object Rep-
resentation: A Performance Perspective." In Proceedings of the Sixth International
Conference on Data Engineering, pages 94-102, February 1990.

7. Kim, Won and others. "Indexing Techniques for Object-Oriented Databases." In
Object-Oriented Concepts, Databases, and Applications, chapter 15, pages 371-394,
New York: ACM Press, 1989.

8. Korth, 1I.F. and A. Silberschatz. Database System Concepts. New York: McGraw-Hill
Book Company, 1986.

9. Lamb, Charles and others. "The ObjectStore Database System," Communications of
the ACM, 34:50-63 (October 1991).

10. Mayo, Robert N. and others. 1990 DECWRI/Livermore Magic Release, 1990.

11. Object Design, Inc., Burlington, Massachusetts. ObjectStorc Administration and De-
velopment Tools, March 1991.

12. Object Design, Inc., Burlington, Massachusetts. ObjectStore Reference Manual,
March 1991.

13. Object Design, Inc., Burlington, Massachusetts. ObjectStore User Guide, March 1991.

14. Ousterhout, John K. Magic Tutorial #6: Design-Rule Checking. University of Cali-
fornia, Berkeley, CA, 1990.

15. Ousterhout, John K. and others. "Magic: A VLSI Layout System." In 21st Design
Automation Conference Proceedings, pages 152-159, 1984.

16. Sawyer, Charlie and Steve Turner. Object Design, Inc. Technical Support, June -
October 1991. Multiple telephone conversations.

62



17. Sidle, Thomas W. "Weaknesses of Commercial Data Base Management Systems in
Engineering Applications." In 17th Design Automation Conference Proceedings, pages
57-61, June 1980.

18. Stroustrup, Bjarne. The C++ Programming Language. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1987.

19. Zdonik, Stanley B. and David Maier, editors. Readings in Object-Oriented Database
Systems. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

63


